2015 IRC® Essentials

Based on the International Residential Code® (IRC®)

Part I

Code Administration
Introduction to Building Codes

- Codes are minimum requirements to safeguard the public health, safety and welfare of the public and occupants or users of spaces or buildings.

ICC Code Development Cycle

- New code published every 3 years
- 12 month cycle
- Codes divided into 3 groups
 1. IBC, IPC, IMC, IFGC, IPSDC
 2. IRC, IFC, IEBC, IECC, IPMC, ISPSC, IWUIC, IZC, ICCPC, Admin.
 3. IgCC
IRC – International Residential Code

- Regulates of 1- and 2-family dwellings and townhouse structures
- Combines all regulations for building, energy, mechanical, fuel gas, plumbing and electrical into one document

Dwellings and Townhouses

- Habitable attic is not considered a story
- Maximum 3 stories above grade plane
- Allows a full basement in addition to 3 stories
Dwellings

- Separate means of egress to the outdoors for each dwelling unit
 - 1 exterior exit door
 - Egress travel distance is not regulated
- No limit on size of dwellings
- 2-family dwellings require fire-resistant separations

Townhouses

- Minimum of 3 townhouses
- No maximum on the number of townhouses
- Fire-resistant separations between townhouses
- Townhouses open on front and back

Units are not open on 2 sides; cannot be constructed under the IRC
Accessory Buildings

- The IRC regulates accessory buildings
 - Use incidental and accessory to dwelling
 - On same lot as dwelling
 - Unlimited area
 - ≤ 3 stories AGP

Existing Buildings

- Existing buildings permitted to continue without change
 - Maintained per code under which they were constructed
- The IRC regulates additions, alterations and repairs to an existing building
- Appendix J offers compliance alternatives for construction on existing buildings
 - Work categorized as repair, renovation, alteration or reconstruction
Adoption of the IRC

- Adopting by local ordinance includes:
 - Edition and title of the IRC
 - Purpose and scope
 - Effective date for ordinance
 - Insertion of local information and criteria into code text:
 - Name of the jurisdiction
 - Design criteria
 - Building sewer depths

Appendices

- Developed in the same manner as the main body of code
- May provide some guidelines or examples of recommended practices
- May assist in the determination of alternative materials or methods
- Have no legal status until specifically recognized in the adopted ordinance or legislation
Building Official Authority and Duties

- Building Official is authorized and directed to:
 - Enforce provisions of code
 - Make interpretations
 - Adopt policies and procedures
 - Approve modifications and alternatives

- Limits on authority:
 - Not authorized to waive code requirements
 - Not authorized to require more than the code

Alternative Methods and Materials

- The IRC does not exclude any material or method
- Alternatives subject to approval by the Building Official
- The Building Official has an obligation to approve alternatives that meet the intent of the IRC
 - Reports issued by the ICC Evaluation Service (ICC-ES) are valuable resources in verifying performance equal to the code requirements
 - www.icc-es.org
- Reason for disapproval in writing
Permits

- Construction requires a permit before work begins
- Exempt work:
 - 1-story tool and storage sheds, playhouses, and similar uses ≤ 200 ft²
 - Decks
 - ≤ 200 ft²
 - ≤ 30 in. above grade
 - not attached to a dwelling and
 - do not serve the required exit door
 - Fences ≤ 7 ft. in height

Fees

- The jurisdiction may charge permit fees to offset the costs of providing associated services to the public
 - Administration costs
 - Plan review costs
 - Inspection costs
- The Building Official develops equitable and consistent procedures for establishing fees
Required Inspections

- Foundation
- Floodplain
- Plumbing, mechanical, gas and electrical systems
- Frame and masonry
- Fire-resistance-rated construction
- Other inspections as deemed necessary
- Final inspection

Board of Appeals

- The public has the right of due process to appeal an order, decision or determination of the building official.
- Basis for appeal:
 - The code has been interpreted incorrectly
 - The code does not apply
 - An equivalent alternative was not accepted
- The Board of Appeals has no authority to waive code requirements
Part II

Site Development

Fire Separation Distance

- Measured perpendicular to the exterior wall
- Measured between the building and:
 - Lot lines
 - Centerline of a street or alley
Site Preparation

- Two basic provisions:
 - Soil characteristics as they relate to the support and stability of foundations
 - Grading to provide surface drainage away from foundations

General Requirements

- Exterior footings
 - Minimum of 12" below the undisturbed ground level
 - Protected against frost

- All footings must bear on:
 - Natural soil; or
 - Compacted engineered fill
Presumptive Load-bearing Values & Properties of Soils

<table>
<thead>
<tr>
<th>Unified Soil Classification System Symbol</th>
<th>Soil Description</th>
<th>Load Bearing Pressure (psf)</th>
<th>Drainage Characteristics</th>
<th>Frost Heave Potential</th>
<th>Volume Change Potential Expansion</th>
</tr>
</thead>
<tbody>
<tr>
<td>GW</td>
<td>Well-graded gravels, gravel sand mixtures, little or no fines</td>
<td>3000</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>GP</td>
<td>Poorly graded gravels or gravel sand mixtures, little or no fines</td>
<td>3000</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>SW</td>
<td>Well-graded sands, gravelly sands, little or no fines</td>
<td>2000</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>SP</td>
<td>Poorly graded sands or gravelly sands, little or no fines</td>
<td>2000</td>
<td>Good</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>GM</td>
<td>Silty gravels, gravel-sand-silt mixtures</td>
<td>2000</td>
<td>Good</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>SM</td>
<td>Silty sand, sand-silt mixtures</td>
<td>2000</td>
<td>Good</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>GC</td>
<td>Clayey gravels, gravel-sand-clay mixtures</td>
<td>2000</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>SC</td>
<td>Clayey sands, sand-clay mixture</td>
<td>2000</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>ML</td>
<td>Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity</td>
<td>1500</td>
<td>Medium</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>CL</td>
<td>Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays</td>
<td>1500</td>
<td>Medium</td>
<td>Medium</td>
<td>Medium to Low</td>
</tr>
<tr>
<td>CH</td>
<td>Inorganic clays of high plasticity, fat clays</td>
<td>1500</td>
<td>Poor</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>MH</td>
<td>Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts</td>
<td>1500</td>
<td>Poor</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

Fill

- Engineered fill is required for:
 - Over-excavation to remove unsuitable soils
 - Additional material to raise the elevation of the footings above the existing undisturbed soil

- Engineered fill must be:
 - Designed by a registered design professional
 - Installed as specified in design requirements
 - Tested as specified in design requirements
Storm Drainage

- Final grade
 - Minimum fall 6" within 10’ of foundation
 - Exception for local site conditions
 - Water can be directed to swales or drains
 - Concrete surfaces within 10’ of the foundation need 2% slope
Part III

Structural

Table R301.2(1)
Climatic and Geographic Design Criteria

- IRC adoption: jurisdiction completes table with data applicable to the jurisdiction – for example:

<table>
<thead>
<tr>
<th>Ground Snow Load</th>
<th>Speed (mph) V_{ult}</th>
<th>Topographic Effects</th>
<th>Special Wind Region</th>
<th>Wind-borne Debris Zone</th>
<th>Seismic Design Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 psf</td>
<td>115 mph</td>
<td>Yes or No</td>
<td>Yes or No</td>
<td>Identify or No</td>
<td>B</td>
</tr>
</tbody>
</table>
Table R301.2(1) (Continued)
Climatic and Geographic Design Criteria

- IRC adoption: jurisdiction completes table with data applicable to the jurisdiction – for example:

<table>
<thead>
<tr>
<th>Subject to Damage from</th>
<th>Ice Barrier Underlayment Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weathering</td>
<td>Frost Line Depth</td>
</tr>
<tr>
<td>Negligible or Moderate or Severe</td>
<td>42 in.</td>
</tr>
</tbody>
</table>

Table R301.2(1) (Continued)
Climatic and Geographic Design Criteria

<table>
<thead>
<tr>
<th>Winter Design Temp</th>
<th>Flood Hazards</th>
<th>Air Freezing Index</th>
<th>Mean Annual Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2⁰ F</td>
<td>Date NFIP, Etc.</td>
<td>1197</td>
<td>51⁰ F</td>
</tr>
</tbody>
</table>
Prescriptive and Performance

- Prescriptive requirements
 - A specific set of rules to follow

- Performance requirements
 - Expectation that the system will function in a certain way
 - For structural requirements, performance is achieved through engineering

Prescriptive and Performance

- Conventional construction
 - Engineered design can be used for structural elements that:
 - Exceed the limits in the code; or
 - Are not included in the code

- Alternative to wood framing provisions
 - Wood Frame Construction Manual published by the American Wood Council
 - WFCM addresses wind speeds up to 150 mph
 - IRC wind speeds are less than 110 mph

For example, the sizing of wide flange steel beams
Live Loads

IRC Table R301.5

Minimum Uniformly Distributed Live Loads

<table>
<thead>
<tr>
<th>USE</th>
<th>LIVE LOAD (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninhabitable attics without storage</td>
<td>10</td>
</tr>
<tr>
<td>Uninhabitable attics with limited storage</td>
<td>20</td>
</tr>
<tr>
<td>Habitable attics and attics served with fixed stairs</td>
<td>30</td>
</tr>
<tr>
<td>Balconies (exterior) and decks</td>
<td>40</td>
</tr>
<tr>
<td>Fire escapes</td>
<td>40</td>
</tr>
<tr>
<td>Rooms other than sleeping rooms</td>
<td>40</td>
</tr>
<tr>
<td>Sleeping rooms</td>
<td>30</td>
</tr>
</tbody>
</table>

Live Loads (Continued)

IRC Table R301.5

Minimum Uniformly Distributed Live Loads

<table>
<thead>
<tr>
<th>USE</th>
<th>LIVE LOAD (psf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guardrails and handrails</td>
<td>200 Single concentrated load applied in any direction along the top.</td>
</tr>
<tr>
<td>Guardrail in-fill components</td>
<td>50 Horizontally applied normal load of 50 lb. on area of 1 sq. ft.</td>
</tr>
<tr>
<td>Passenger vehicle garages</td>
<td>50 2,000-lb concentrated load / 20-sq. in. area.</td>
</tr>
<tr>
<td>Stairs</td>
<td>40 300-lb concentrated load / 4 sq. in. of tread</td>
</tr>
</tbody>
</table>
Dead Loads

- Average dead loads are included in the prescriptive tables for:
 - Footings
 - Floors
 - Walls
 - Roofs

For example, spread footing sizes for conventional frame construction assume average weights for the construction materials being supported.

Deflection

- Allowable deflection in structural framing members:
 - Studs
 - Joists
 - Beams
 - Rafters
 - Table R301.7
 - L = span length
 - H = span height

<table>
<thead>
<tr>
<th>Structural Member</th>
<th>Allowable Deflection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafters having slopes greater than 3:12 with no finished ceiling attached to rafters</td>
<td>L/180</td>
</tr>
<tr>
<td>Interior walls and partitions</td>
<td>H/180</td>
</tr>
<tr>
<td>Floors/ceilings with plaster or stucco finish</td>
<td>L/360</td>
</tr>
<tr>
<td>All other structural members</td>
<td>L/240</td>
</tr>
<tr>
<td>Exterior walls—wind loads with plaster or stucco finish</td>
<td>H/360</td>
</tr>
<tr>
<td>Exterior walls with other brittle finishes</td>
<td>H/240</td>
</tr>
<tr>
<td>Exterior walls with flexible finishes</td>
<td>H/120</td>
</tr>
<tr>
<td>Lintels supporting masonry veneer walls</td>
<td>L/600</td>
</tr>
</tbody>
</table>
Example 4-1 Floor Joist Deflection

- Floor joist span is 14’
- Allowable deflection from Table R301.7 is L/360

 \[L = 14' \times 12'' = 168'' \]
 \[168 \div 360 = 0.47 \]

 Allowable deflection is 0.47”

Note: a 14’ span rafter with 4:12 slope and no ceiling attached has an allowable deflection of L/180, which is twice the deflection allowed for floor joists.

Wind Loads

- Wind forces acting on buildings

 - IRC conventional framing limits wind speed to 140 mph \(V_{ul} \) (130 in hurricane prone areas)
 - AWC – Wood Framing Construction Manual (WFCM)
 - ICC 600 – Standard for Residential Construction in High-Wind Regions
 - ICC – International Building Code
 - ASCE 7 – Minimum Design Loads for Buildings and Other Structures
Wind Exposure Category

- **Exposure B**
 - Some wind protection with trees and buildings
 - Default

- **Exposure C**
 - Open terrain with scattered obstructions

- **Exposure D**
 - Flat, unobstructed areas exposed to open water, smooth mud flats, salt flats and unbroken ice for $\geq 5,000$ ft

Hurricane-prone regions

- **Hurricane-prone regions.** Areas vulnerable to hurricanes, defined as the U.S. Atlantic Ocean and Gulf of Mexico coasts where the ultimate design wind speed, V_{ult}, is greater than 115 miles per hour, and Hawaii, Puerto Rico, Guam, Virgin Islands and America Samoa.

- **Windborne debris region.** Areas within hurricane-prone regions located in accordance with one of the following:
 - 1. Within 1 mile of the coastal mean high water line where the ultimate design wind speed, V_{ult}, is 130 mph or greater.
 - 2. In areas where the ultimate design wind speed, V_{ult}, is 140 mph or greater; or Hawaii.
Snow Loads

- Snow loads must be considered where applicable
- IRC and WFCM conventional framing tables are limited to snow load <70 psf

Earthquakes

- The IRC assigns a Seismic Design Category to building sites relative to the anticipated intensity and frequency of earthquakes
- Prescriptive provisions of the IRC are adequate for SDC A and B

<table>
<thead>
<tr>
<th>Seismic Design Category</th>
<th>1- and 2-Family Dwellings</th>
<th>Townhouses</th>
</tr>
</thead>
<tbody>
<tr>
<td>A & B</td>
<td>No seismic requirements</td>
<td>No seismic requirements</td>
</tr>
<tr>
<td>C</td>
<td>No seismic requirements</td>
<td>Seismic Requirements Apply</td>
</tr>
<tr>
<td>D0, D1, D2</td>
<td>Seismic Requirements Apply</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Engineered Design Required</td>
<td></td>
</tr>
</tbody>
</table>
Earthquakes

- Regularly shaped buildings
 - Uniform distribution of forces
 - More predictable response characteristics
- Irregularly shaped buildings
 - Force concentrations
 - Generally less effective in resisting earthquake load effects

Foundation Materials

- Concrete
 - Removable forms
 - Stay-in-place insulating concrete forms (ICF)
- Precast concrete
- Masonry
- Wood
- Engineered or alternative designs
Footings

- Footings must bear on undisturbed ground
- Footings must extend below the frost depth
- Exterior footings 12” below undisturbed ground level
- Detrimental materials removed prior to placing concrete

Size of Concrete Footings

<table>
<thead>
<tr>
<th>Snow load</th>
<th>Type of foundation</th>
<th>Load bearing value of soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 psf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-story</td>
<td>Slab-on-grade</td>
<td>12 x 6</td>
</tr>
<tr>
<td></td>
<td>With crawl space</td>
<td>13 x 6</td>
</tr>
<tr>
<td></td>
<td>Plus basement</td>
<td>19 x 6</td>
</tr>
<tr>
<td>2-story</td>
<td>Slab-on-grade</td>
<td>12 x 6</td>
</tr>
<tr>
<td></td>
<td>With crawl space</td>
<td>17 x 6</td>
</tr>
<tr>
<td></td>
<td>Plus basement</td>
<td>23 x 6</td>
</tr>
</tbody>
</table>

Projection “P” ≥ 2 in. and ≤ T
Thickness “T” ≥ 6 in.
Width “W” per table
Example 5-1
Footing Size

- Determine minimum width (W), projection (P) and thickness (T) of a continuous spread footing

- Given:
 - 2-story dwelling with basement
 - 1500 psf assumed soil bearing capacity
 - 30 psf snow load
 - Conventional construction:
 a) Light-frame construction with siding
 b) Light-frame construction with brick veneer

<table>
<thead>
<tr>
<th>Snow load</th>
<th>Type of foundation</th>
<th>Load bearing value of soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 psf</td>
<td>2-story plus basement</td>
<td>23 x 6</td>
</tr>
<tr>
<td></td>
<td>2-story plus basement</td>
<td>27 x 9</td>
</tr>
</tbody>
</table>

Conventional Light-Frame Construction

With Brick Veneer
Example 5-2
Isolated Footing Size

- Given:
 - Column supports tributary floor area of 120 ft² at 50 psf
 - 1,500 psf assumed soil-bearing capacity
 - Determine minimum footing size

- Soil load-bearing capacity
 - 1500 psf

- Tributary column load
 - 120 ft² x 50 lbs. = 6,000 lbs.
 - 6,000 lbs. ÷ 1,500 psf = 4 ft²

- Thickness (T) Min. 6”
- Projection (P) cannot exceed footing thickness
Foundation Anchorage

- Anchor bolts
 - ½-inch diameter
 - 7-inch embedment
 - Middle 1/3 of plate

- Wood sill plate anchorage to foundation for
 - Dwellings and townhouses in SDC “A” and “B”
 - Dwellings in SDC “C”

 - Standard washer and nut on each bolt
 - Note: Offsets ≤ 24” require only one anchor bolt in center third of plate
 - Max 12 in. Min. 7 bolt dia.
 - Max 6 ft.
Foundation Anchorage

- Wood sill plate anchorage
 - Seismic
 - Dwellings and townhouses in SDC D₀, D₁, and D₂
 - Townhouses in SDC C

- 3" x 3" plate washers approximately ¼" thick

- Bolt spacing ≤ 4’ for anchorage of 3-story buildings

Concrete Foundation Walls

- Foundation walls must be constructed to resist lateral loads

- Thickness and vertical reinforcement determined by:
 - Soil type
 - Height of foundation
 - Height of unbalanced backfill
 - Difference in height between the exterior finish ground level and the top of the interior basement floor
Concrete Foundation Walls

- Horizontal reinforcing required for basement walls
 - Table R404.1.2(1)

<table>
<thead>
<tr>
<th>Maximum Unsupported Height of Basement Wall</th>
<th>Location of Horizontal Reinforcement</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤8 feet</td>
<td>One No. 4 bar within 12” of the top of the wall and one No. 4 bar near mid-height of the wall story</td>
</tr>
<tr>
<td>>8 feet</td>
<td>One No. 4 bar within 12” of the top of the wall and one No. 4 bar near third points the wall story</td>
</tr>
</tbody>
</table>

- Vertical reinforcing required
 - Tables R404.1.2(2) through R404.1.2(9)

Horizontal Reinforcing in Concrete Basement Wall

- Table R404.1.2(1)
 - 3 horizontal No. 4 bars
 - One bar within 12” of top
 - Other bars at third points
 - Bars located in center of wall
Vertical Reinforcing in Concrete Basement Wall

- Soil class = CL inorganic sandy clay
- 10" nominal thickness
- Wall height = 9'
- Unbalanced backfill height = 8'
- Table R404.1.2(8) Vertical Reinforcement
 - No. 6 bars at 39 inches on center

<table>
<thead>
<tr>
<th>Wall Hgt.</th>
<th>Unbal. backfill</th>
<th>Soil class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SC, ML-CL and inorganic CL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6" 8" 10" 12"</td>
</tr>
<tr>
<td>6</td>
<td>6 @ 36 6 @ 39 NR NR</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6 @ 33 6 @ 38 5 @ 37 NR</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6 @ 24 6 @ 29 6 @ 39 4 @ 48</td>
<td></td>
</tr>
</tbody>
</table>

Height Above Finished Grade

- Concrete and masonry foundation walls must extend above the finished grade adjacent to the foundation
 - Minimum of 4" with masonry veneer
 - Minimum of 6" elsewhere
Moisture Protection

- Drainage by perforated pipe or other approved drain system
 - Installed at or below the level of the basement or crawl space floor
 - Exception for areas with well-drained soils
- Dampproofing materials applied to the exterior of the foundation
- Waterproofing in areas with a high water table or other known severe soil-water conditions
 - Flexible sealants or other impervious material

Underfloor Space

- Ventilation of crawl space required
 - Circulate air
 - Dissipate condensation
- Method of ventilation
 - Foundation openings
 - Mechanical exhaust ventilation
 - Connection to the conditioned air supply of the dwelling
- Access to underfloor spaces
 - 18" x 24" through floor
 - 16" x 24" through perimeter wall
Framing

- Light-frame construction
 - Wood or cold-formed steel
- Grade mark on wood products
 - Wood structural panels
 - Load-bearing dimension lumber

Engineered Wood Products

- Plate-connected open web trusses
- I-joists
- Glued-laminated lumber
- Laminated veneer lumber (LVL)
- Other structural composite lumber (SCL)
Wood Trusses

- Design submitted to building official for approval
- Include:
 - Design loads
 - Slope or depth, span and spacing
 - Required bearing widths
 - Lumber size, species and grade
 - Connection requirements
 - Required permanent bracing location
 - Other information

Wood Treatment

- Wood in locations subject to decay requires:
 - Wood treated with preservatives; or
 - Naturally durable wood
 - Redwood
 - Cedar
 - Black locust
 - Black walnut

Tag on preservative treated wood
Protection Against Decay

- 6 x 6 pressure preservative treated post approved for ground contact

Clearance above grade

Boring and Notching Floor and Ceiling Joists

- Boring holes and notching of solid sawn beams, floor joists and ceiling joists
Boring and Notching Bearing Walls

- Notch 25% of stud depth maximum
- Bored holes in single studs: Maximum diameter 40% of stud depth
- Maximum diameter 60% of stud depth: Studs must be doubled
- No more than two successive doubled studs so bored
- 5/8 in. minimum from edge of stud

Hole size in 2’ x 4’ stud
Stud depth = 3 1/2”
Largest hole ≤ 60%
60% x 3 1/2” = 2 1/8”
5/8” + 2 1/8” + 5/8” = 3 3/8”

Boring and Notching Nonbearing Walls

- Bored holes may not be in the same cross section as notches

Minimum 3/8 in. from edge of stud
Notch 40% of stud depth maximum

Maximum diameter of bored holes is 60% of stud depth maximum
Boring and Notching Top Plate of Bearing Wall

- Designed to stop the spread of fire in concealed spaces of wood frame construction.

- Walls at floor & ceiling levels
- Connection of horizontal & vertical spaces
- Nominal 2" lumber
- Layers of structural wood panels
- Glass fiber insulation secured in place

Fireblocking

- Designed to stop the spread of fire in concealed spaces of wood frame construction.
Draftstopping

- Divide concealed floor assembly spaces into areas of <1000 ft²

- Materials:
 - 1/2" gypsum board
 - 3/8" wood structural panels
 - Other approved materials

Wood Floor Framing

- Prescriptive tables for:
 - Beams and girders
 - No. 2 grade Douglas fir-larch, hem-fir, southern pine and spruce-pine-fir
 - Various support conditions
 - Floor joists
 - Specific grade and species of lumber
 - Live load 30 or 40 psf
 - Dead load 10 or 20 psf
Example 6-1
Beam Size and Bearing Support

- Determine the minimum size and bearing support requirements for an interior beam supporting 2 floors
- #2 hem-fir lumber
- Building width = 28'
- Beam span = 6'

<table>
<thead>
<tr>
<th>Girder supporting</th>
<th>Size</th>
<th>Building width</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Span</td>
<td>Span</td>
</tr>
<tr>
<td>3-2x10</td>
<td>6-2</td>
<td>5-4</td>
</tr>
<tr>
<td>3-2x12</td>
<td>7-2</td>
<td>6-3</td>
</tr>
<tr>
<td>4-2x8</td>
<td>6-1</td>
<td>5-3</td>
</tr>
<tr>
<td>4-2x10</td>
<td>7-2</td>
<td>6-2</td>
</tr>
</tbody>
</table>

Example 6-2
Joist Size and Spacing

- Living area = 40 psf LL
- #2 Douglas fir-larch
- Dead load = 10 psf
- Span = 14'

Table R602.7(2)
- Three 2 x 12
- Four 2 x 10

Table R502.3.1(2)

<table>
<thead>
<tr>
<th>Joist Spacing</th>
<th>Joist Size</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>12" O.C.</td>
<td>2 x 8</td>
<td>14 – 2</td>
</tr>
<tr>
<td>16" O.C.</td>
<td>2 x 10</td>
<td>15 – 7</td>
</tr>
<tr>
<td>19.2" O.C.</td>
<td>2 x 10</td>
<td>14 – 3</td>
</tr>
<tr>
<td>24" O.C.</td>
<td>2 x 12</td>
<td>14 – 9</td>
</tr>
</tbody>
</table>
Fastener Schedule for Floor Framing

- IRC Table R602.3(1)
- Fastener Schedule for Structural Members
- Common nails

<table>
<thead>
<tr>
<th>Description</th>
<th>Nails</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rim joist to plate, toe nail</td>
<td>8d</td>
<td>6” O.C.</td>
</tr>
<tr>
<td>Joist to sill or girder, toe nail</td>
<td>3 - 8d</td>
<td>–</td>
</tr>
<tr>
<td>Joists lapped at bearing support, face nail</td>
<td>3 - 10d</td>
<td>IRC Section R502.6.1</td>
</tr>
<tr>
<td>Built-up girders and beams</td>
<td>10d</td>
<td>24” O.C. at top and bottom and staggered. Three nails at ends and at each splice.</td>
</tr>
</tbody>
</table>

Deck Attachment

- Deck ledger connection to:
 - 2” band joist; or
 - 1 x 9½ Douglas Fir LVL rim board

- Fasteners
 - ≥½” diameter lag screws or bolts with washers
 - Hot-dipped galvanized or stainless steel
 - Lag screws full-depth through rim joist
 - Fasteners staggered along length of ledger
Deck Joists and Beams

- Prescriptive methods for joists and beams in deck construction.
 - Spans & bearing requirements

Wall Framing

- Size and spacing of studs is related to:
 - Number of floors being supported
 - With or without the additional load of the roof-ceiling assembly
Example 6-3

Stud Size and Spacing

- Determine the minimum size, maximum height and maximum spacing of standard studs in an exterior bearing wall

- Given:
 - 3 stories of wood framing (walk-out basement plus 2 stories)
 - Standard- or stud-grade lumber

<table>
<thead>
<tr>
<th>Stud Size (inches)</th>
<th>Maximum Spacing</th>
<th>Maximum Spacing</th>
<th>Maximum Spacing</th>
<th>Maximum Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Laterally Unsupp. Stud Height (feet)</td>
<td>When Supporting a Roof/Ceiling Assembly or a Habitable Attic Assembly Only</td>
<td>When Supporting One Floor Plus a Roof/Ceiling Assembly or a Habitable Attic Assembly</td>
<td>When Supporting Two Floors Plus a Roof/Ceiling Assembly or a Habitable Attic Assembly</td>
</tr>
<tr>
<td>2 x 3</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2 x 4</td>
<td>10 ft</td>
<td>24'</td>
<td>16'</td>
<td>--</td>
</tr>
<tr>
<td>3 x 4</td>
<td>10 ft</td>
<td>24'</td>
<td>24'</td>
<td>16'</td>
</tr>
<tr>
<td>2 x 5</td>
<td>10 ft</td>
<td>24'</td>
<td>24'</td>
<td>--</td>
</tr>
<tr>
<td>2 x 6</td>
<td>10 ft</td>
<td>24'</td>
<td>24'</td>
<td>16'</td>
</tr>
</tbody>
</table>

Stud height in bearing walls is generally limited to 10'.
Example 6-4
Header Size in Exterior Walls

Given:
- Ground snow load = 30 psf
- Clear span roof truss
- Center bearing floor framing
- Building width = 28'
- Header span = 7'
- #2 Douglas fir-larch

Table R602.7.1

<table>
<thead>
<tr>
<th>Supporting</th>
<th>Size</th>
<th>Span</th>
<th>Jack studs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof & Ceiling</td>
<td>2-2x10</td>
<td>7-3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2x12</td>
<td>8-5</td>
<td>2</td>
</tr>
<tr>
<td>Roof, ceiling, one center-bearing floor</td>
<td>2-2x10</td>
<td>6-2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2-2x12</td>
<td>7-1</td>
<td>2</td>
</tr>
<tr>
<td>Roof, ceiling, two center-bearing floors</td>
<td>3-2x10</td>
<td>6-4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>3-2x12</td>
<td>7-4</td>
<td>2</td>
</tr>
</tbody>
</table>
Wall Bracing

- Wall bracing provides resistance to racking from lateral loads, primarily wind and seismic forces.
- Amount and location of bracing is determined by several factors:
 - Number of stories
 - Seismic design category
 - Design wind speed
 - Method of bracing

Method PFH Braced Wall Panels

Portal Frame with Hold-Downs
- Minimum hold-down capacity 3500 lbs
- Double sill plate
- 5/8-inch anchor bolt
Ceiling Joists

- Ceiling joists
 - Support ceiling materials
 - Serve as rafter ties to resist the outward thrust of the rafters at the top of the wall
 - Require adequate connection to the rafter and top of wall

- Ceiling joist spans for:
 - Attics without storage
 - Attics with limited storage
 - Attics with fixed stair access require joists sized as floor joists

Rafters

- Rafter spans based on:
 - Snow load of the geographic area;
 - Roof live load of 20 psf where snow load <30 psf;
 - Whether ceiling material is attached to the bottom of the rafter

- Connection to ceiling joists
 - Rafters are connected to the ceiling joists at the top plate; or
 - 2 x 4 rafter ties are required to resist the outward thrust forces of the rafters on the wall
Example 6-6
Rafter Size and Spacing

Given:
- #2 Spruce-pine-fir lumber
- Span = 15'
- Ground snow load = 30 psf
- Dead load = 10 psf
- Ceiling not attached to rafters

Example 6-6
Rafter Size and Spacing

Table 802.5.1(3) - Rafter Spans

<table>
<thead>
<tr>
<th>Rafter Spacing (inches)</th>
<th>Species and Grade</th>
<th>Dead Load = 10 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 x 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ft - in</td>
</tr>
<tr>
<td>16</td>
<td>Douglas fir-larch #2</td>
<td>12-1</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>11-2</td>
</tr>
<tr>
<td></td>
<td>Spruce-pine-fir #2</td>
<td>11-11</td>
</tr>
<tr>
<td>24</td>
<td>Douglas fir-larch #2</td>
<td>9-9</td>
</tr>
<tr>
<td></td>
<td>Southern Pine #2</td>
<td>10-2</td>
</tr>
<tr>
<td></td>
<td>Spruce-pine-fir #2</td>
<td>9-9</td>
</tr>
</tbody>
</table>
Example 6-6

15 ft rafter span

2x8 @ 16 in. o.c. or 2x10 @ 24 in. o.c.

Rafter Tie Alternatives

- Rafter ties
- Ridge beam

Minimum 1 x 4 collar ties at 4 feet OC to resist uplift installed in upper 1/3 of attic space

Minimum 2 x 4 rafter ties

Ceiling joists perpendicular to rafters

Rafter spans are reduced if rafter ties are located higher in the attic space

Approved connectors

Finish ceiling materials applied directly to rafters or furred out for insulation or aesthetic purposes

No ceiling joist or rafter ties to resist outward rafter thrust on walls
Table R602.3(1)
Fastener Schedule for Roof Framing

<table>
<thead>
<tr>
<th>Description</th>
<th>Nails</th>
<th>Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rafter or roof truss to plate, toe nail</td>
<td>3-16d box or 3-10d common</td>
<td>2 toe nails on one side and 1 toe nail on opposite side</td>
</tr>
<tr>
<td>Roof rafters to ridge, valley or hip rafters</td>
<td>4-16d toe nail 3-16d face nail</td>
<td>–</td>
</tr>
<tr>
<td>Ceiling joists to plate, toe nail</td>
<td>3-8d common</td>
<td>–</td>
</tr>
<tr>
<td>Collar tie to rafter, face nail</td>
<td>3-10d common</td>
<td>–</td>
</tr>
<tr>
<td>Rafter/ceiling joist heel joint connection</td>
<td>Table R802.5.1(9)</td>
<td>–</td>
</tr>
</tbody>
</table>

Roof Uplift Connections

- Table provides uplift values based on:
 - Building width
 - Wind speed
 - Exposure category
 - Roof pitch
- For ≤200 lbs. uplift, toe-nail connection is OK
- For >200 lbs. uplift, a connector is required
Example

Roof Uplift Connection

- Determine uplift forces
- Given:
 - Wind speed = 115 mph
 - Wind exposure B
 - Trusses 24 in. o.c.
 - Building width = 36 ft
 - Roof slope = 5:12

<table>
<thead>
<tr>
<th>Rafter or Truss Spacing</th>
<th>Roof Span (feet)</th>
<th>Roof Pitch</th>
</tr>
</thead>
<tbody>
<tr>
<td>24” OC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>< 5:12</td>
<td>≥ 5:12</td>
</tr>
<tr>
<td>28</td>
<td>198</td>
<td>176</td>
</tr>
<tr>
<td>32</td>
<td>218</td>
<td>194</td>
</tr>
<tr>
<td>36</td>
<td>240</td>
<td>212</td>
</tr>
</tbody>
</table>

Attic Ventilation and Access

- Total net free ventilating area must be 1/150 of attic area
 - Reduced to 1/300 when 40% to 50% of ventilating area in upper portion of space
 - Unvented attics may be permitted with certain conditions
- Access to attics required when:
 - Attic area >30 ft², and
 - Attic height >30”
- Access
 - Minimum 22” x 30”
 - 30” headroom above the opening
 - Located in a hallway or other readily accessible location
Interior Finishes

- Minimum installation requirements for:
 - Gypsum board (drywall)
 - Plaster
 - Ceramic tile
 - Wood paneling
- Inspection is not required except when part of a fire-resistance-rated assembly
Exterior Wall Covering

- 3 components of a weather-resistant exterior wall assembly:
 - Water-resistive barrier required over sheathing of all exterior walls, except for detached accessory buildings
 - Flashing
 - Siding or veneer

Masonry and Stone Veneer

- SDC A, B or C
 - < 3 stories
 - < 30 feet above noncombustible foundations
 - Additional 8 feet for gable end walls
 - < 5 inches thick
 - Weight < 50 psf weight
- SDC D₀, D₁, or D₂
 - Reduced height, weight and thickness limitations

1 layer of #15 asphalt saturated felt, or Other approved water-resistant material
Example 7-1
Size of a Steel Lintel

- Determine the minimum size of a steel lintel masonry veneer with 1 story above

Table R703.8.3.1
Allowable Spans for Lintels Supporting Masonry Veneer

Stories above = 1
Span = 6'0"
Steel angle = 4" x 3" x ¼"

Long side of steel angle must be in the vertical position

Roof Covering

- Weather protection system:
 - Underlayment
 - Ice barriers
 - Flashing
 - Roofing material

Minimum flashing size

Turn-out bottom flashing to direct water away from wall

Wall sheathing
Water-resistant barrier
Rodi
Underlayment
Asphalt shingles
Flashings
Roof sheathing
Underlayment for Asphalt Shingles

- **Slope > 2:12 and < 4:12**
 - 1 layer underlayment
 - 2" horizontal lap
 - No. 15 asphalt felt
 - Offset vertical laps by 6"

- **Slope > 4:12**
 - 19" horizontal lap
 - 2 layers underlayment

Ice Barriers

- Ice barrier is required in areas with a history of water damage to structures from ice dams at roof eaves
Ceiling Height

- Generally 7 ft. 0 in.
- 6 ft. 8 in.:
 - Bathrooms
 - Toilet rooms
 - Laundry rooms
 - Basements w/o habitable space or hallways
- 6 ft. 4 in. basements:
 - Beams
 - Girders
 - Ducts
 - Other obstructions
Means of Egress

- “Means of egress” describes the path of travel from any location in the dwelling to the exterior
 - Stairways
 - Ramps
 - Hallways
 - Doors
 - One 3'-0" × 6'-8" side-swinging egress door to exterior
 - No size or type requirements for other doors
 - No limits on travel distance

Means of Egress

- Designed to provide a safe path to exterior
 - Does not pass through a garage
 - ½” gypsum board on enclosures under stairs
 - Egress components securely anchored to the structure
 - Required egress door can be opened without a key or special knowledge
 - Access to grade at required egress door
Landings at Exterior Doors

- Landing or floor on each side of exterior door
 - At least as wide as the door
 - ≥ 36 in. in the direction of travel
- Max. landing slope = ¼ / 12
- No elevation requirements in Section R311.3
- Exception for balconies

Required Egress Door

- Required egress door
- Landings or finished floors ≤ 1½ in. below top of threshold
- Exception
 - Door swings in
 - Exterior landing can be a maximum of 7¾ inches below top of the threshold
- Access to grade
Landings at Exterior Doors

- Other than required egress door
- Landing on either side:
 - ≤ 7¾ in. below top of the threshold
- Door swings either direction

Stairs at Exterior Doors

- Door other than required egress door
- Exception:
 - Stairs allowed on exterior side
 - Door cannot swing out over stairs
 - Stairs can have a maximum of 2 risers
Stair treads and risers

- Riser ≤ 7¾ in.
- Tread ≥ 10 in.
- Variance ≤ ¾ in.
- Nosing projection ¾ - 1¼ in.

Stair treads and risers

- Treads > 30 in. above floor or grade
 - Solid risers, or
 - 4-in. diameter sphere cannot pass through
Stairway Width

- Minimum clear width of 36"
 - Required above the handrail; and
 - Below the required headroom height
 - ≤ 4½” handrail projection either side

Stairway Headroom

- Minimum headroom
 - 6 ft. 8 in.
 - Above plane of tread nosings
Winder Stairs

- Nonparallel edges
- Tread depth of 6” at the narrow end
- Tread depth of 10” measured at walk line

Landings

- Required at top and bottom of stairs
- Width of stairway
- Minimum 36” in direction of travel
- Maximum 147” vertically between landings
- Exception allows a door at the top of an interior flight of stairs, provided the door does not swing over the step
Handrail

- Max. 4½-inch projection from wall
- Min. 1 ½-inch clearance to wall
- Graspable shape

Handrail continuity

- Flight 1
 - Landing
 - Continuous transition
 - Starting newel permitted on bottom tread
 - Interruption not permitted
- Flight 2
 - Ends returned

Handrail is permitted to be interrupted by newel post at a turn

A volute, turnout, starting easing or starting newel is permitted on the lowest tread
Guards

- A walking surface >30 inches above any point within 36 inches horizontally
- Min. guard height 36 in.
 - 34 in. at stairs

Guards

- Openings shall not allow a 4-in. sphere to pass through
 - 4 ⅝ in. along stairs
- Top rail to resist a single concentrated load of 200 lbs. applied in any direction
- Infill components to resist 50-lb. horizontal load applied to an area of 1 ft²
Windowsill Height

- Window openings >72” above grade must have a sill height of >24”
- Alternatives to 24” sill height
 - Window opening control device
 - Window fall prevention device
 - Fixed glazing

Emergency Escape and Rescue Openings

- Basements
- Habitable attics
- Sleeping rooms
 - Exceptions:
 - Storm shelters
 - Basements ≤ 200 sq. ft. used only to house mechanical equipment
Emergency Escape and Rescue Openings

Minimum width = 20"
Minimum height = 24"
Minimum area = 5.7 ft²

Minimum area 5.0 ft² for grade floor or below grade openings

Safety Glazing – Adjacent Doors

Safety glazing not required
> 24 in.
≤ 24 in.

Safety glazing required
≤ 60 in.
≥ 60 in.
≤ 24 in.
Safety Glazing – Windows

- Exposed area of an individual pane > 9 sq. ft.
- Bottom edge of glazing < 18 in. above floor
- Top edge of glazing > 36 in. above floor
 - Exception:
 - Horizontal rail installed 34 to 38 in. above walking surface

Safety Glazing – Wet Surfaces
Safety Glazing – Adjacent Stairs

Safety Glazing – Adjacent Bottom Landing

Glazing less than 36 inches above the floor and installed in areas adjacent to bottom landing must be safety glazing.
Smoke Alarms

- In each sleeping room
- Outside each sleeping area
- On each story
- Building wiring system to provide primary power
- Battery backup
- Interconnection

Smoke Alarms in Existing Dwellings

- Retrofit smoke alarms when a permit is required:
 - Interior alterations or repairs
 - Additions
- Battery-operated smoke alarms
- Exception – provisions do not apply for:
 - Minor work that does not require a permit
 - Exterior work such as roofing or siding
 - Replacing doors or windows
 - Addition of a deck or porch
Residential Fire Sprinkler Systems

- Required in:
 - New dwellings
 - New townhouses
- Design criteria:
 - IRC Section P2904
 - NFPA 13D
 - Both designs applicable to 1- and 2-family dwellings and townhouses

Exterior Walls

- Dwelling without fire sprinklers
- Dwelling with fire sprinklers

NR wall Unlimited openings
Eave Projections

Dwelling without fire sprinklers

- No protection required
- 1-HR protection

Dwelling with fire sprinklers

- No protection required
- 1-HR protection
Two-Family Dwelling Separation

- 1-hour separation
 - Continuous foundation to roof
- Exception
 - ⁴/₅-inch gypsum board ceiling
 - ½-inch gypsum board on bearing walls
 - Draft stop in attic

Townhouse Separation

- 1-hour FR rated common wall
- Fire-resistant penetration requirements for electrical boxes
- No plumbing or mechanical
- 2-hour FR rated common wall
- With Sprinklers
- Without sprinklers
Parapet Exception

- No roof openings or penetrations
- Fire-retardant treated (FRT) roof sheathing
- Top chord of roof truss
- Common fire-resistance-rated wall

Alternatives to FRT sheathing:
- Non-combustible sheathing
- 5/8-in. Type X gypsum board below sheathing

2015 IRC Essentials 137

Dwelling Separation from Garage

- Not a fire-resistance-rated assembly
- ½" gypsum board on the garage side provides limited resistance to the spread of fire
- 5/8" Type X gypsum board on ceiling when habitable space above

- Option 1: No habitable space above garage
- Option 2: Supporting walls must have ½" gypsum board

Workbook Page 156-157

2015 IRC Essentials 138
Dwelling Separation from Garage

- Penetrations not rated
- No openings from garage into a sleeping room
- Self-closing door
 - 1¾"-thick solid-core wood
 - 1 ¼"-thick solid-core steel
 - 1 ¾"-thick honeycomb-core steel
 - 20-minute fire-resistance-rated

Fire Protection of Floors

- Underside of floor assembly
 - ½" gypsum board
 - ¾" wood structural panel
 - equivalent material
- Exceptions
 - ≥ 2 ×10 dimension or SCL
 - Sprinklers below
 - ≤ 80 ft² area
 - Crawl space with no storage or fuel-fired appliances
Light and Ventilation

- Habitable rooms:
 - Glazing ≥ 8% or lighting ≥ 6 footcandles
 - Openings ≥ 4% or mechanical ventilation
- Bathrooms:
 - Glazing ≥ 3 ft² or electric lighting
 - Openings ≥ 1.5 ft² or mechanical exhaust

Whole-house Mechanical Ventilation System

- Required if
 - Blower door test performed and
 - Air infiltration rate ≤ 5 ACH
- Prescriptive air flow rate based on
 - Area of dwelling
 - Number of bedrooms
 - Continuous or intermittent operation
Stairway Illumination

- **Interior stairways**
 - Treads and landings ≥1 foot-candle
 - Wall switch at each floor level ≥ 6 risers.
- **Exterior stairways**
 - Light source at top landing
 - Bottom landing providing access to a basement

Carbon Monoxide (CO) Alarms

- **Required if**
 - Fuel-fired appliance or
 - Attached garage communicating with dwelling unit
- **Locations**
 - Outside of each separate sleeping area adjacent bedrooms
 - Within bedroom with fuel-burning appliance located within bedroom or attached bathroom
- **Power**
 - House wiring with battery backup
Chimneys and Fireplaces

- Masonry fireplaces
- Masonry chimneys
- Factory-built fireplaces
- Factory-built chimneys
- Exterior Air Supply

Masonry Chimney Termination

- 3 feet above roof penetration
- 2 feet higher than any portion of a building within 10 feet
- Flashing to weatherproof the chimney penetration at the roof
- Crickets required for chimneys >30” wide
- Chimney cap required
- Rain cap optional
Part VII

Energy Conservation

Energy Efficiency

- IRC Chapter 11 is extracted from the applicable provisions of the 2015 IECC
Compliance Paths

Projects shall comply with one of the following:

1. Sections N1101.14 through N1104.
2. Section N1105 and the provisions of Sections N1101.14 through N1104 labeled “Mandatory.”
3. An energy rating index (ERI) approach in Section N1106.

Building Insulation

- Pieces of insulation >12” in width must have:
 - Visible R-value mark; or
 - Installer certification
 - Insulation type
 - Manufacturer
 - R-value
Blown-in or Sprayed Insulation

- Attic markers each 300 sq. ft.
- Certificate indicating:
 - Initial installed thickness
 - Settled thickness
 - Settled R-value
 - Installed density
 - Coverage area
 - Number of bags installed

Insulation Requirements

- Minimum R-values for insulation is based on climate zone
- Exceptions:
 - Energy truss or raised-heel roof truss
 - Reduced R-values in rafter or joist space
 - Cold-formed steel framing requires higher insulation R-values and continuous insulation sheathing to provide a thermal break
Insulation Requirements

- Slab on grade
- Crawl spaces
 - Insulation of the floor above the crawl space; or
 - Insulation of the exterior walls
 - When the crawl space is not ventilated to the outside
 - Vapor retarder on exposed earth of unventilated crawl spaces

Windows and Doors

- Fenestration includes:
 - Skylights
 - Roof windows
 - Vertical windows
 - Opaque doors
 - Glazed doors
 - Glass block
- U-factor
- Solar Heat Gain Coefficient (SHGC)
Sealing Against Air Leakage (Mandatory)

- Windows and doors
- Sill plate, rim joist, top plate
- Garage separation
- Tubs/showers
- Attic access opening
- Rim joists
- Recessed lighting
- Electrical boxes

Testing of Building Thermal Envelope (Mandatory)

- Blower door test required
- Allowable air-leakage rate:
 - Climate Zones 1 – 2: ≤ 5 ACH
 - Climate Zones 3 – 8: ≤ 3 ACH
- Test results on permanent certificate
Duct Insulation and Sealing

- Supply and return ducts in attics > R-8
- Supply and return ducts in other locations > R-6
- No insulation required for ducts within conditioned spaces
- Sealing of all ducts is required
- Air leakage test except when entire system is installed within the thermal envelope
- Building cavities cannot be used as ducts or plenums

Hot Water Pipe Insulation (Prescriptive)

- Hot water pipe insulation ≥ R-3 for:
 - ≥ ¾” diameter pipe
 - Water Heater to distribution manifold
 - Outside conditioned space
 - Under slab or underground
 - Piping in recirculation systems other than demand systems
Energy Certificate (Mandatory)

- Completed by:
 - Builder; or
 - Registered design professional
- Listing of
 - Insulation
 - Fenestration
 - Type and efficiency of equipment
 - Results of air testing
- Permanent certificate posted near furnace or approved indoor location

Part VI

Building Utilities
Appliances
Installation and Location

- Gas-fired appliances
- Installation and clearances per the appliance listing
- Prohibited locations
 - Sleeping room
 - Bathroom
 - Toilet rooms
 - Storage closets
 - Space that opens only into such rooms or spaces

Exception

Other exceptions for:
1. Direct-vent appliances
2. Vented room heaters
3. Vented wall furnaces
4. Vented gas fireplaces

Appliances
Installation and Location

- In garages, the ignition source ≥18” above the floor
 - Unless the appliance is listed as flammable-vapor-ignition resistant
- In all locations, protected from impact by vehicles
Access to Appliances

- Minimum 30” x 30” working space in front of the controls
- Access doors and passageways
 - Minimum 24” wide
 - Large enough to remove the largest appliance
- Clearance
 - Furnace compartments to be >12” inches wider than the appliance
 - Minimum 3” clearance at the sides and back

Access Appliances in Attics

- Finish access opening
 ≥ 20 x 30
 (R807.1 Rough 22 x 30)
- Passageway
 ≥ 22 x 30 h
 ≥ 24-in. wide flooring
 ≤ 20-ft. length
- Exception
 ≤ 6-ft. high x 50 ft. long
Clothes Dryer Exhaust Systems

- Termination
 - Backdraft damper
 - No screen
 - ≥ 3 ft. from openings

- Length
 - Deductions for fittings
 - Label when > 35 ft.
 - Label ≤ 6 ft. from dryer
 - Listed transition duct

Clothes Dryer Exhaust Systems

- Dryer Exhaust Duct
 - Power Ventilator (DEDPV)
 - Per manufacturer
 - Protection of concealed dryer duct
 - < 1⅛ inches
 - ≥ 2 in. above sole plates, below top plates

Copyright 2015 International Code Council
Dryer Exhaust Duct

- 4-in. smooth metal duct
 - Min. No. 28 gage
- Insert in direction of flow
- Max. 1/8-in. screw penetration

Whole-house Mechanical Ventilation system

- Prescriptive airflow rate based on:
 - Floor area of dwelling unit
 - Number of bedrooms
 - Continuous or intermittent
- System design
 - One or more supply or exhaust fans, or a combination
 - Outdoor air ducts connected to the return permitted to supply ventilation

<table>
<thead>
<tr>
<th>Floor Area</th>
<th>Bedrooms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 – 3</td>
</tr>
<tr>
<td>< 1500</td>
<td>45</td>
</tr>
<tr>
<td>1501 – 3000</td>
<td>60</td>
</tr>
<tr>
<td>3001 – 4500</td>
<td>75</td>
</tr>
</tbody>
</table>
Combustion Air from Inside the Building

- Combustion air can draw from an adjacent room if:
 - Volume of adjacent space is >50 ft³ per 1000 Btu/h
 - At least 2 openings provide air from the adjacent room
 - Free area of openings based on:
 - Btu/h input rating of all appliances
 - 1 in² per 1000 Btu/h
 - Minimum 100 in² per opening

```
Furnace = 100,000 Btu/h
Water heater = 35,000 Btu/h
Combined input = 135,000 Btu/h
```

2015 IRC Essentials 169

```
135,000 6,750 ft³
  1,000 volume required x 50 = 135

135,000 135 in² net free area
  1,000 per opening =
```

```
Each opening must be >135 in² of free area
```

Combustion Air from Two Outdoor Openings

- Direct opening or vertical duct
 - Free area of >1 in² per 4000 Btu/h of total input rating
- Direct opening or horizontal ducts
 - Free area of >1 in² per 2000 Btu/h of total input rating

```
135,000 33.75 in² net free area
4,000 per opening =
```

```
135,000 67.5 in² net free area
2,000 per opening =
```

Copyright 2015 International Code Council
Combustion Air from **Single Outdoor Opening**

- Free area of the opening ≥ 1 in2 per 3000 Btu/h
- Free area must equal the sum of the areas of all vent connectors in the space
- Minimum clearances required around the appliances for free circulation of air

```
\[
\frac{135,000}{3,000} = 45 \text{ in}^2 \text{ net free area per opening}
\]

\[
7'' \text{ diameter} = 38.5 \text{ in}^2
4'' \text{ diameter} = 12.5 \text{ in}^2
\text{Combined} = 51.0 \text{ in}^2
\]

Larger of the two = 51 in$^2$
```

Gas Vent Roof Termination

- Termination height for gas vents with a cross section $<12''$ and at least 8’ from a vertical wall is based on the roof slope

<table>
<thead>
<tr>
<th>Roof Slope</th>
<th>Minimum Height from Roof to Lowest Discharge Opening (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq 6/12$</td>
<td>1.0</td>
</tr>
<tr>
<td>$>6/12$ to $\leq 7/12$</td>
<td>1.25</td>
</tr>
<tr>
<td>$>7/12$ to $\leq 8/12$</td>
<td>1.5</td>
</tr>
<tr>
<td>$>8/12$ to $\leq 9/12$</td>
<td>2.0</td>
</tr>
<tr>
<td>$>9/12$ to $\leq 10/12$</td>
<td>2.5</td>
</tr>
<tr>
<td>$>10/12$ to $\leq 11/12$</td>
<td>3.25</td>
</tr>
<tr>
<td>$>11/12$ to $\leq 12/12$</td>
<td>4.0</td>
</tr>
<tr>
<td>$>12/12$ to $\leq 14/12$</td>
<td>5.0</td>
</tr>
<tr>
<td>$>14/12$ to $\leq 16/12$</td>
<td>6.0</td>
</tr>
<tr>
<td>$>16/12$ to $\leq 18/12$</td>
<td>7.0</td>
</tr>
<tr>
<td>$>18/12$ to $\leq 20/12$</td>
<td>7.5</td>
</tr>
<tr>
<td>$>20/12$ to $\leq 21/12$</td>
<td>8.0</td>
</tr>
</tbody>
</table>
Gas Pipe Materials

- Schedule 40 steel
- Approved seamless metallic tubing
 - Gas used cannot be corrosive to the material
- Corrugated stainless steel tubing (CSST)
- Exterior underground locations only:
 - Approved plastic pipe, tubing and fittings

Prohibited Locations for Gas Piping

- Piping cannot be installed:
 - Within an air duct
 - Within a clothes chute
 - Within a chimney
 - Within a gas vent
 - Through any other townhouse unit
 - Entering a building below grade
Gas Piping Protection

- Concealed piping installed through holes or notches in studs, joists, rafters must be:
 - >1½” from the nearest edge of the member or
 - Protected by No. 16 Gage nail shield plates
 - Except Schedule 40 black or galvanized steel gas piping
- CSST gas tubing requires protection in accordance with the code and the manufacturer’s installation instructions

Other Gas Piping Installation Requirements

- Above-ground gas piping outdoors
 - ≥ 3½” above ground and above roof surface
 - Protection from corrosion for ferrous metal
 - Painting
 - Galvanizing
- Underground gas piping
 - Steel pipe wrapped with approved material for corrosion protection
 - Galvanizing is not approved protection from corrosion
 - Buried ≥ 12” deep
Gas Appliance Connections

- Appliance connector materials
- Appliance connector installation
 - Can pass through the appliance housing in accordance with the manufacturer's instructions
 - Rigid metallic piping
 - CSST
 - Listed and labeled appliance connectors
 - Listed and labeled quick-disconnect appliance connectors
- Shut-off valve
 - <6', or
 - <50' when connected to manifold

Plumbing Piping Protection from Damage

- Concealed piping installed through studs, joists or rafters
 - < 1¼ in. from nearest edge
 - Shield plates ≥ 0.0575" thick steel (No. 16 Gage)
 - Covers area where the pipe passes through
 - Extends ≥ 2" above sole plates and below top plates
- Exception for cast iron and galvanized steel pipe
Protection from Freezing

- Underground water service pipe
 - Buried ≥12" deep
 - Buried ≥ 6" below the frost line
- Building sewer pipe
 - Depth determined by the Jurisdiction
 - Stipulated in the adopting ordinance

Plumbing Piping Support

- Support
 - Maintains alignment and slope
 - Prevents sagging
 - Allows for expansion and contraction
- Underground
 - Continuous support
 - Suitable bedding materials
 - Not supported on rocks or blocks
 - Backfill free of debris, rocks, concrete, and frozen material
 - Protection of footings
Aboveground Plumbing Piping Support

- Horizontal and vertical support spacing based on the pipe material
- A mid-story guide is required for vertical plastic piping ≥ 2-in. diameter

<table>
<thead>
<tr>
<th>Piping Material</th>
<th>Maximum Horizontal Spacing (ft)</th>
<th>Maximum Vertical Spacing (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS pipe</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Cast-iron pipe, <10' lengths</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Cast-iron pipe, 10' lengths</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Copper or copper alloy pipe</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>PEX pipe</td>
<td>2.67</td>
<td>10</td>
</tr>
<tr>
<td>PVC pipe</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Water Service

- When pipe for building sewer is listed for underground use within a building:
 - Water service pipe is permitted in the same trench with a building sewer (e.g. cast-iron or schedule 40 PVC DWV)
- For building sewer pipe not approved for underground use within a building:
 - Water service must be separated from sewer pipe:
 - ≥ 5’ of horizontal separation, or
 - Installed on a ledge ≥ 12” inches above and to one side of the highest point of the building sewer
Water Supply System Design Criteria

- Water service at the building entrance
 - 40–80 psi
 - ≥ ¾” pipe size
- Distribution system pipe size based on
 - Fixture unit values
 - Developed length of piping
 - Water pressure
- Flow rates and consumption are limited for plumbing fixtures to conserve water
- Valves
 - Main shut-off valve
 - At each fixture other than showers and tubs

Water Supply Protection

- Backflow prevention devices suitable for the application
 - Hose connections
 - Boilers
 - Heat exchangers
 - Lawn irrigation systems
- Air gap required at
 - Sinks
 - Lavatories
 - Bathtubs
Sanitary Drainage

- Approved fittings for change in direction

Cleanouts

- Cleanouts required where:
 - Horizontal drain lines change direction >45°
 - Within 10 ft. of building drain / building sewer connection
 - Where more than one change of direction occurs, only one cleanout is required in each 40'
 - A readily removable fixture, such as a water closet or a fixture trap of a sink, may serve as a cleanout
Fixture Vents

- The distance from the trap to the vent is limited
 - Self-siphoning fixtures such as water closets are not limited
 - Vent connection is not permitted to be below the trap weir

![Diagram of fixture vent system]

Vent Pipe

- Horizontal wet venting is permitted for fixtures of one or two bathroom groups located on the same floor
- Diameter of vent piping
 - At least ½ of the required diameter of the drain served
 - >1¼" wet vent
 - For vents >40’, increase of one pipe size
Vent Termination

- Open vents
 - ≥ 6 in. above roof
 - ≥ 6 in. above anticipated snow accumulation
- Frost closure
 - 97.5% outside design temperature ≤ 0°F
 - Increase to 3 in. at point ≥ 12 in. inside building envelope

Protection Against Scalding

- Temperature control devices are required on the water outlets of bathing fixtures and bidets to prevent scalding

<table>
<thead>
<tr>
<th>Fixture</th>
<th>Maximum Temperature</th>
<th>Approved Device</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shower or Tub/Shower Combination</td>
<td>120°F</td>
<td>Pressure-balance control valve or Thermostatic-mixing control valve or Combination pressure-balance/thermostatic-mixing control valve</td>
<td>ASSE 1016 / ASME A112.1016/CSA B125.1</td>
</tr>
<tr>
<td>Bathtub or Whirlpool</td>
<td>120°F</td>
<td>Water-temperature-limiting device</td>
<td>ASSE 1070 or CSA B125.3</td>
</tr>
<tr>
<td>Bidet</td>
<td>110°F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fixture Traps

- Traps provide a water seal with a depth of 2” to 4” to prevent sewer gases from entering the building.
- Floor drains require a trap-primer or deep-seal design to prevent the loss of their water seal by evaporation.

Water Heaters

- Connection to the water supply
- Drain pan if damage will occur
- Temperature & pressure relief valve
- Ignition sources elevated
 - ≥18” above garage floor
- Anchorage to walls
 - SDCs D₀, D₁, and D₂
 - Townhouses in SDC C
Electrical Services

- IRC covers:
 - 120/240-volt
 - Single-phase systems
 - <400 amperes
- Main service disconnect
- Service distributes electricity to the premises wiring system
- Only one service is permitted for 1- and 2-family dwellings

Equipment Location

- Readily accessible service disconnect
- Working space
- Light source nearby
- Spaces above and below the panel are dedicated to the electrical installation
- Not in clothes closets or bathrooms
 - Electrical panels
 - Service disconnects
 - Circuit breakers
Electrical Service Size and Rating

- Service rating
 - Minimum 100 amp for single-family dwellings
 - Minimum 60 amperes for other installations
- Ampacity of ungrounded service conductors and service rating must at least match the load served in the structure

Grounding Electrode System

- Grounding options
 - Underground metal water pipe
 - Concrete-encased reinforcing bar (Ufer ground)
 - Approved ground rods

If a single ground rod has a resistance of >25 ohms, then a 2nd ground rod is required

Requires at least one additional electrode
Bonding

- Main bonding jumper at service equipment
 - Connection of the grounding system to the grounded (neutral) conductors occurs at main service disconnect
- Metal water piping must be bonded to the ground system

Conductor Sizing

- Ampacity tables are provided for all wire sizes based on the material and insulation type
- When sizing wires, several variables must be considered:
 - Temperature rating of the conductor insulation
 - Derating for bundled conductors
 - Temperature rating of the terminal

<table>
<thead>
<tr>
<th>Conductors</th>
<th>Circuit Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 amp</td>
</tr>
<tr>
<td>Min. size (AWG) circuit conductors (copper)</td>
<td>12</td>
</tr>
<tr>
<td>Overcurrent-protection device max. amp rating</td>
<td>12</td>
</tr>
<tr>
<td>Duplex or multiple outlet receptacle rating (amps)</td>
<td>15 max</td>
</tr>
<tr>
<td>Single receptacle outlet minimum rating (amps)</td>
<td>15</td>
</tr>
<tr>
<td>Max. load (amps)</td>
<td>15</td>
</tr>
</tbody>
</table>
Overcurrent Protection Required

- Circuit breaker or fuse is required to protect all ungrounded branch circuit and feeder conductors
- Overcurrent protective device ratings cannot exceed the allowable ampacity of the conductor

<table>
<thead>
<tr>
<th>Copper</th>
<th>Aluminum or Copper-Clad Aluminum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (AWG)</td>
<td>Maximum overcurrent protection device rating (amps)</td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Overcurrent devices located:
1. Where the branch circuit conductors receive their supply
2. At the service panel (typically)
3. So they are readily accessible
4. Where not subject to damage
5. Not in clothes closets or bathrooms
6. Not located above a step

Wiring Methods

- Cable and conductors must be approved for the location
- Typically, above-ground wiring is Type NM non-metallic cable
- Protection from physical damage
- Fasteners
 - Approved fasteners
 - Spacing
- Cable support
Receptacle Outlet Locations

An outlet within 24" measured along wall
At least one outlet in each bathroom

An outlet within 36" of each lavatory

Outlets shall have GFCI protection behind range or sink

Alternate location for one receptacle to serve both lavatories

Outlets shall have GFCI protection

Kitchen requirements

General room requirements

Bathroom requirements

Wall spaces <2' wide are not included

Walls are measured around corners

An outlet within 6' measured along wall

An outlet within 36" of each lavatory

At least one outlet in each bathroom

Outlet required on islands with a side >24"

Outlet not required behind range or sink

At least one outlet in each bathroom

An outlet within 36" of each lavatory

Outlets shall have GFCI protection behind range or sink

Outlet required on islands with a side >24"

Outlet not required behind range or sink

Receptacle Outlet Locations

1 outlet required when hallway length >10'

Length measured along hallway centerline

1 outlet at the front, and 1 outlet at the back of the dwelling at grade

Foyers >60 sq.ft. require an outlet on each wall >3' wide

Foyers >60 sq.ft. require an outlet on each wall >3' wide

Porches which are

Measured between:
• Doorways
• Floor-to-ceiling windows
• Similar openings

Outlets shall have GFCI protection

Foyers >60 sq.ft. require an outlet on each wall >3' wide

Porches which are

Measured between:
• Doorways
• Floor-to-ceiling windows
• Similar openings

Outlets shall have GFCI protection

Outdoor requirements

Foyer requirements

Foyers >60 sq.ft. require an outlet on each wall >3' wide

Porches which are

Measured between:
• Doorways
• Floor-to-ceiling windows
• Similar openings

Outlets shall have GFCI protection
Lighting Outlets

- Wall switch–controlled lighting outlet
 - Habitable rooms
 - Bathrooms
 - Hallways
 - Storage areas
 - Garages
 - Stairways
 - Outside each exterior door

Ground-fault Circuit-Interrupter Protection (GFCI)

- GFCI protection required:
 - Bathroom
 - Kitchen counter
 - Unfinished basement
 - Except fire/burglar alarm system
 - Garage
 - <6’ from sink
 - Exterior
Arc-fault Circuit Interrupter Protection (AFCI)

- AFCI devices
 - Detect unwanted arcing in the wiring of the branch circuit
 - Open the circuit before excessive heat buildup can cause a fire
- AFCI devices are installed in the service panel or subpanel
- AFCI protection required for:
 - Living areas
 - Hallways
 - Closets

Receptacles

- Wet locations
 - Enclosure that is weatherproof
 - when a cord is plugged in
 - Receptacles prohibited within or directly over a bathtub or shower space
- Tamper-resistant receptacle required in locations accessible to children
 - Not required when:
 - >5½’ above the floor
 - Part of a luminaire or appliance
 - In a dedicated space for an appliance
Luminaires in Clothes Closets

- Type of luminaires
- Minimum clearances
- Clearances are measured from the fixture to the nearest point of the defined storage space
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© International Code Council 2015

Thank you for participating

To schedule a seminar, contact:

The ICC Training & Education Department
1-888-ICC-SAFE (422-7233) Ext. 33818
or
E-mail: icctraining@iccsafe.org